PG (NEW) CBCS M.Sc. Semester-I Examination, 2019 PHYSICS PAPER: PHS-104

Full Marks: 40

Time: 2 Hours

Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

PHS 104.1: ANALOG ELECTRONICS - I

Marks: 20

1. Attempt any two of the following:

 $(2 \times 2 = 4)$

- a. What is Vestigial Side Band (VSB) modulation and where it is used?
- b. What is duplexer and where it is used?
- c. What is slew rate of an OP-AMP? For an ideal OP-AMP, what should be its value?
- d. What is secant law for sky-wave propagation?

2. Attempt any two of the following:

 $(4 \times 2 = 8)$

- a. How you can create current to voltage converter using OP-AMP?
- b. Show that for ionospheric wave, the refractive-index of the ionised medium is given by $n = \sqrt{1 \frac{81N}{f^2}}$, where $e = 1.6 \times 10^{-19}$ C, $m = 9.1 \times 10^{-31}$ kg and $\epsilon_0 = 8.854 \times 10^{-12}$ F/m.
- c. Draw the circuit diagram of a balanced modulator and explain with necessary derivation, how it can generate DSB-SC signal?
- d. (i) Find the BW of the channel required to transmit an FM signal with ΔF =75 KHz and maximum frequency of the modulating signal=15 KHz.
 - (ii) A differential amplifier has CMRR=100dB. Its differential mode gain is 10,000. Find its common mode gain.

3. Attempt any one of the following:

 $(8 \times 1 = 8)$

- a. What do you mean by amplitude modulation? Draw a circuit using BJT which generates AM modulated signal. Draw the block diagram of a Superheterodyne FM radio receiver.
- b. i) Derive radar range equation and explain how the radar range can be increased? (5)
 - ii) Explain how the distance of a fixed target can be found out by using two frequency CW radar.(3)

(Turn Over)

PHS 104.2: DIGITAL ELECTRONICS - I

Marks: 20

1. Answer any two of the following:

 $(2\times 2=4)$

- a. Draw a 8:1 MUX using two 4:1 MUX.
- b. Convert the clocked D FF into a JK-type FF.
- c. Simplify using K map $f(a,b,c,d) = \sum_{m} (0,1,9,12,13,14,15) + d(4,5,8,9)$
- d. Draw the waveforms to shift the binary number 1010 into the serial-in and serial-out shift register.

2. Answer any two of the following:

 $(4 \times 2 = 8)$

- a. Design a 4-bit ripple carry Adder.
- b. Design a full adder circuit using 4:1 MUX.
- c. Draw the K-map for the function F and minimise the function F' in sum of product form (a) F=W'X'YZ+WYZ (b)F=A'B'C'D'+A'CD+ABCD
- d. Design a MOD-10 counter. Also draw the timing waveforms.

3. Answer any one of the following

 $(8 \times 1 = 8)$

- a. Design a BCD to 7 segment decoder circuit.
- b. i) In an astable multivibrator $R_A=2.2k\Omega$, $R_B=3.9k\Omega$ and $c=0.1~\mu F(R_A\&R_B)$ are charging resistor and discharging resistor). Determine the positive pulse width t_c , negative pulse width t_d and free running frequency t_0 . What is the duty cycle of the output waveform?
- ii) A digital system receives 4 bit binary numbers. Design a display system to display only the BCD numbers 0 to 9 and for non-BCD numbers the display should show the figure of English alphabet E which indicates error.

(4)
