PG (NEW) CBCS M.Sc. Semester-I Examination, 2019 PHYSICS

PAPER: PHS-102

Full Marks: 40

Time: 2 Hours

Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

PHS 102.1: QUANTUM MECHANICS - I

Marks: 20

1. Attempt any two of the following

 $(2 \times 2 = 4)$

- a) Prove that for any normalized wave function of particle of mass m in one dimension $\int_{-\infty}^{\infty} J(x) dx = \frac{\langle p_x \rangle}{m}$, where the symbol have usual meanings.
- b) Evaluate $[\hat{x}, e^{ip_x a/\hbar}]$.
- c) If $\psi_2(x) = (2x^2-1)\exp(-x^2/2)$ is the wave function of one dimensional Harmonic oscillator, find $\psi_3(x)$ and $\psi_1(x)$.
- d) If $\psi(x)=A \exp[-\frac{x^2}{a^2}]$ calculate $\Phi(p)$ (momentum eigenfunction).

2. Attempt any two of the following

 $(4 \times 2 = 8)$

- a) Write down the time-independent Schrodinger equation for a free particle in the momentum space and obtain the form of the wave function.
- b) An electron is confined in the ground state of a one-dimensional H.O. Such that $\Delta x=1A^0$. Assuming $\langle T \rangle = \langle V \rangle$. Find the energy in ev required to excite it to its 1st excited state.
- c) If $\psi_{100}(\mathbf{r}) = \frac{1}{\sqrt{\pi a_0^3}} e^{\frac{-r}{a_0}}$ find $\langle p_r^2 \rangle$.
- d) If En and E_m are the energies corresponding to the eigen states |n> and states |m> respectively. Then prove that $\sum_n (\text{Em} \text{En}) | < m |\hat{x}| n > |^2 = -\frac{\hbar^2}{2}M$, where M is the mass of the particle.

3. Answer any one of the following

 $(1 \times 8 = 8)$

- a)i) What are the basic differences between Schrodinger picture and interaction picture of equation of motion of a particle?
 - ii) Derive the expression of the time rate of change of an operator represented in interaction picture of the equation of motion. (4)
- iii) Find the energy eigen values of a particle in an infinite height potential well using Heisenberg picture. (2)

(Turn Over)

b) A particle is trapped in a potential well V(x)=0 for $-a/2 \le x \le a/2$

=∞ otherwise

Prove that
$$(\Delta x)(\Delta p) = \sqrt{(\frac{\pi^2}{12} - \frac{1}{2})} \,$$
 (8)

PHS 102.2: SOLID STATE - I

Marks: 20

1. Answer any two of the following:

 $(2\times 2=4)$

- a) Explain the symmetry element associated with point group.
- b) Explain how a single crystal material can be identified by Laue diffraction technique.
- c) What is meant by Van Hove singularity?
- d) Explain what is meant by effective mass of an electron? When negative effective mass of an electron correspond to?

2. Answer any two of the following:

 $(2 \times 4 = 8)$

- a) Find an expression of interplaner spacing of Hexagonal lattice.
- b) Show that total number of space group in monoclinic system is thirteen.
- c) Derive the dispersion relation for a monoatomic linear chain and hence designate first Brillouin zone.
- d) Show that effective number of free electron is maximum when the outermost band is half filled.

3. Answer any one of the following:

 $(1 \times 8 = 8)$

- a) Find the expression of intensity corresponding scattering of x-ray from a crystal and hence derive Laue equation. (8)
- b) What is physical origin of band gap in a solid and hence find an expression of forbidden energy region. (3+5)
