MCC/18/M.Sc./Sem.III/PHS/1

Third Semester Examination-2018 M.Sc. PHYSICS

Paper Code:PHS-302

Full Marks: 40

Time: 2 Hours

Use Separate scripts for Group A& Group B <u>Group A</u>

(Molecular Spectroscopy & Laser Physics)

Answer question number 1 and any one questions from the rest.

- 1. Answer any five of the following questions $(2 \times 5 = 10)$
- a) State Born-Oppenheimer Approximation.

Write down an analytical expression for vibrational coarse structure spectrum.

- b) What is symmetric top molecule? Can an asymmetric top molecule shows rotational spectrum?
- c) Write down the selection rules and expression for the energy shift (ΔE) for the rotational fine structure involving P branch and R branch lines.
- d) The force constant of HCl molecule is 4.8×10^5 dyne/cm. Find the energy required to increase the nuclear separation by 1 Angstrom.
- e) The value of w_e and w_exare 1580.36 and 12.073 cm respectively for the ground state of molecular oxygen. Calculate the zero point energy.
- f) Explain what is Hot Bond?
- g) What is Fortrat Parabola?
- h) Explain what is meant by Q switching.
 - 2. i) Calculate the moment of inertia of a linear polyatomic molecule. (4)
 - ii) State the conditions for a molecule to exhibit
 - (a) Rotational, (b) Vibrational and (c) Electronic transition. (2)
 - iii) How anharmonicity affects the pattern of the allowed vibrational energy levels. (2)
 - iv) Calculate the separation between the Vibrational energy levels of an Anharmonic Oscillator for (2)
 - a) $v = 0 \to v = 1$
 - b) $v = 0 \rightarrow v = 2$
 - c) $v = 0 \rightarrow v = 3$
- 3.a) With proper justification, obtain the rate of equation of a four level laser. Hence derive threshold pumping power of the four level one.

(3.5 + 3.5)

b) Explain the mechanism of CO₂ laser.

(3)

Group B

(Nuclear Physics-I)

Answer question number 4 and any one questions from the rest.

- 4. Answer any five of the following questions $(2 \times 5 = 10)$
 - a) α -particles having kinetic energy 8.776 MeV is subjected to a magnetic field of 1T. What is the radius of curvature of the track?
 - b) For γ radiation of 100 keV energy from the nuclei A = 56 with average life of excited state 10^{-10} sec. Is resonance fluorescence possible (Neglect Doppler broadening).
 - c) Estimate the mass of neutrino from the free decay of neutron to proton. The maximum kinetic energy of β decay is 782.32 keV. Given $m_n = 939.5657$ MeV, $m_p = 938.2723$ MeV, $m_e = 0.511$ MeV.
 - d) What is internal conversion?
 - e) ^{34}Cl decays positron to ^{34}S . Derive the maximum positron energy. Difference in masses of the neutral atoms of ^{34}Cl and ^{34}S is 5.52 MeV/c²
 - f) Compute the disintegration energy of the reaction $Pu^{239} \rightarrow \alpha + U^{235}$ Given the energy of emitted α particles is 5.144 MeV.
 - g) What is the energy required to remove the last tightly bound neutron from Ca_{20}^{40} ?
 - h) What is Mossbauer effect⁷?
- 5. a) Show that in β ray spectrum, the most intense energy occurs at

$$E = \frac{E_{max}}{5}.$$
 (4)

- b) For a α decay, derive the Gamow's formula of transmission coefficient. (6)
- 6. a) Write the working formula and show the experimental set-up for the measurement of nuclear magnetic moment using Rabi method. Rabi obtained resonance of Li⁷ (I=3/2) in a steady magnetic field of 0.3385 T and at frequency if oscillator at 5.585 MHz. Calculate the magnetic moment of Li⁷ (5+2)
- b) Derive the nuclear quadrupole moment of a prolate spheroid shaped nucleus of atomic number Z with semi axises a and b. (3)