

ACC NO. OT39

MCC/18/M.Sc./Sem.II/PHS/1

Second Semester Examination-2018

M.Sc. PHYSICS

Paper Code: PHS 202

Full Marks: 40

Time: 2 Hours

Use Separate scripts for Group A & Group B Group A

(Solid State II)

Answer Question no 1 and any One from the rest.

1. Answer any two questions from the following:

 $2 \times 2 = 4$

- Assuming electronic polarigibility derive clausius mostti relation of a solid.
- ii) Clearly distinguish Type I & Type II superconductor with neat diagrams of Variation of magnetisatum with magnetic field.
- iii) Calculate the value of London penetration depth λ_o at OK for lead whose super electron density is $3.29 \times 10^{28} / m^3$.

2. Answer any two questions from the following:

2×3=6

- i) Show that transition from superconducting state to normal state at $T = T_c$, is second order.
- ii) What is Meissner effect? Show how London's equation leads to this effect?
- iii) The optical index of refraction and the dielectric constant for water are 1.33 and 8.1 respectively. Determine the percentage of ionic polarizibility.
- 3. What is single particle tunneling explain. Explain DC Josephson effect in details and find an expression of current density. What is meant by flux quantization?
 2+6+2=10
- 4. Derive the expression for e'(w) and e''(w) for electronic polarizibility in presence of ac field. Show the variation of e'(w) and e''(w) with frequency for electronic polarizibility.

A Superconducting Tin has a critical temperature of 3.7k in zero magnetic field and a critical field of 0.0306T at 0k. Find the critical field at 2k.

What is difference between perfect conductor and superconductor (Draw necessary diagram). 3+2+3+2=10

Group B

(Semiconductor Physics)

Answer Question no 1 and 2 & any One from the rest.

1. Answer any two questions:

 $\times 2 = 4$

 i) An intrinsic si bar is doped uniformly with 10²¹ atoms of antimony per m³. Calculate the value of resistivity.

Given: $n_i 1.5 \times 10^{+10} \text{cm}^{-3}$, $\mu_n = 0.13 \text{m}^2/\text{v-sec}$,

 $\mu_n = 0.05 \text{ m}^2/\text{v-sec.}$

- ii) A pure semi-conductor has an energy gap of 1ev. For temperature of 0k and 300k respectively, calculate the probability of an electron occupying a state near bottom of the conduction band.
- iii) Find the expression of Fermi level of an intrinsic semi-conductor.

2. Answer any two questions:

2×3= 6

- i) Drive expression for potential barrier in a P-n junction when there is no external bias.
- ii) The minority carrier lifetime in P-type material is 10^{-7} second. The mobility of electron in si is $0.15\text{m}^2\text{v}^{-1}\text{s}^{-1}$ at 300k. If 10^{20} electron/m³ are injected at x=0, what is the diffusion current density just at the junction?
- iii) Explain what is meant by relaxation time? Show from the growth and recombination of carrier, the photoconductive decay can be expressed as $\Delta n = \Delta n_s e^{-t/\zeta}$ provide the light is made off.

3. Answer the following questions:

6+4=10

- i) Derive expression for current in a p-n junction diode under forward bias condition.
- ii) Describe operation of a semiconductor Laser.

4. Answer the following questions:

6+1+3=10

- Derive an expression of density of states in the conductor bond and hence find the concentration of electron in a non-degenerate semiconductor.
- ii) In an n type semi-conductor, the Fermi level lies 0.3ev below the conduction bond at 300k. If the temperature is increased at 330k, find the new position of Fermi level.