PG (NEW) CBCS M.Sc. Semester-I Examination, 2018 **PHYSICS**

PAPER: PHS-102

Time: 2 Hours

Full Marks: 40

Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

PHS 102.1: QUANTUM MECHANICS - I

Marks: 20

Attempt Question number 1, 2 and any one from the rest.

1. Attempt any two of the following

 $(2 \times 2 = 4)$

a) The relation between angular frequency ω and wave number k for a given type of waves is $\omega = \alpha k + \beta k^2$.

Find out the wave number k₀ for which the phase velocity (v_p) equalise the group velocity (vg).

b) Find the value of $[\hat{x}, e^{2\pi i pa/h}]$

c) For the ground state of the hydrogen atom, evaluate the expectation value of the radius vector r of the electron where $\psi_0 = \frac{1}{\sqrt{\pi a_0^2}} e^{-\frac{r}{a_0}}$

- d) In a stationary state of rigid rotator, show that the probability density is independent of the angle φ .
- 2. Attempt any two of the following

 $(4 \times 2 = 8)$

a) The solution of the Schrodinger equation for a free particle of mass m in one dimension is ψ (x, t) at t=0,

$$\psi$$
 (x,0) = A exp[$-\frac{x^2}{a^2}$]

Find the probability amplitude in momentum space at t = 0 and time t.

- b) Evaluate $e^{\frac{2\pi ipa}{h}} \hat{\chi} e^{-\frac{2\pi ipa}{h}}$
- c) i) The operator e^A is defined by

$$e^A = 1 + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$

Show that $e^D = T_1$, where $D = (\frac{d}{dx})$ and T_1 is defined by T_1 f(x) = f(x+1). ii) Check whether the operator $-i\frac{h}{2\pi}x(\frac{d}{dx})$ is Hermitian.

- d) Consider a particle of mass m in the one-dimensional short range potential

$$V(x) = -V_0 \delta(x), V_0 > 0$$

Where $\delta(x)$ is the dirac delta function. Find the energy of the system.

3. Answer any one of the following $(1 \times 8 = 8)$

Find the Hamiltonian operator of a charged particle in an electromagnetic field described by the vector potential A and scalar potential φ .

Prove that $\Delta x \Delta p_n = (n+1/2)h$ for a one dimensional harmonic oscillator using ii) operator method.

1

4. a) Show that the zero point energy of (1/2) $h\omega/2\pi$ of a linear harmonic oscillator is a manifestation of the uncertainty principle. (3)

b) If
$$\widehat{H} = \frac{p^2}{2m} + \frac{1}{2} \text{ m } \omega^2 x^2$$

Evaluate $[\hat{x}(t), \hat{x}(0)]$ using Heisenberg equation of motion.

(5)

Marks: 20

Attempt Question number 1, 2 and any one from the rest.

1. Answer any two bits

 $(2\times 2=4)$

- a) Explain what is meant by single crystal and polycrystalline material and how can they be identified experimentally.
- b) Show the stereogram and matrix representation of e/m.
- c) The velocity of sound in metal $\sim 3 \times 10^3$ ms⁻¹. Interatomic distance is 3 Angstrom. Estimate the order of magnitude of cut-off frequency assuming a linear lattice.
- d) A hypothetical semi-conductor crystal has a conduction bond that can be described by E_{cl}=E₁-E₂Cos(ka). What is the effective mass of the electron at the bottom of the conduction band?
- e) What is meant by Brillion zone? How can you construct it?
- 2. Answer any two bits.

 $(2\times 4=8)$

- a) Find am experiment of density of states for a linear chain of atom. (3+1)What is Van Hove Singularity?
- b) Prove that 'optical branch' does not arise in case of a monoatomic lattice.
- c) Prove that effective number of free electron in a solid is maximum when the outer most band is half-filled. What us meant by negative effective mass?
- 3. Derive the Laue equation assuming X-ray falling on a crystal. (8)
- 4. Describe in detail Debye Waller effect and hence find Debye Waller factor. Derive the vibrational modes of a diatomic linear chain of atom.

(4+4)