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1. Answer any two questions of the following: 2%2
a) Ifyand y’ are topologies on a set x and y’ is strictly finer than y. What can
you say about the corresponding subspace topologies on the subset y of x?
b) Define an older topology on an ordered set x.
c) If Y is a subspace of X and Z is subspace of Y, then show that Z is a
subspace of X.
d) Is the space R;connected? Justify your answer.
2. Answer any two questions of the following: 4%2
a) Let x be a topological space with topology vy. if y is a subset of x. Then
show that the collection y,, = {Y U N: U € y} is atopology on'Y.
b) State the following theorems:
) Urysohn Metrization theorem
1)  Tychonoff theorem
¢) Show that every compact Hausdorff space is normal.
d) Show that R® in the uniform topology satisfies the first countability

axiom but it does not satisfy the second countability axiom.
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3. Answer any one questions of the following: 8x1
a) 1) Define Hausdorff space. Let x and y be two Hausdorff spaces, then
show that x x y is a Hausdorff space. 2+2
i) Let X be metrizable topological space. Show that the following are
equivalent:
(u) Every continuous function @ = X — R is bounded.
(v) X is limit point compact. 2+2
b) i) Let B be a basis for the topology of a non-empty set x and e be a
basis for the topology of y. Then show that the collection
D ={B X C:Be€f and C € e} is a basis for the topology of x x y.
4
i) Let Y be an ordered set with order topology. Let f, g: x — y be two
continuous functions. Then show that the set {x € x! f(x) < g(x)} is

closed in x. 4
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