PG (NEW) CBCS M.Sc. Semester-II Examination, 2019 APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING PAPER: MTM-206 (GENERAL TOPOLOGY)

Full Marks: 40		Time: 2 Hours	
1.	Answer any two questions of the following:	2×2	
a)	If y and y' are topologies on a set x and y' is strictly fi	iner than y. What can	
	you say about the corresponding subspace topologies	on the subset y of x?	
b)	Define an older topology on an ordered set x.		
c)	If Y is a subspace of X and Z is subspace of Y, the	nen show that Z is a	
	subspace of X.		
d)	Is the space \mathbb{R}_l connected? Justify your answer.		
2.	Answer any two questions of the following:	4×2	
a)) Let x be a topological space with topology y. if y is a subset of x. Then		
	show that the collection $y_y = \{Y \cup \cap : \cup \in y\}$ is a top	pology on Y.	
b)	b) State the following theorems:		
	i) Urysohn Metrization theorem		

- ii) Tychonoff theorem
- c) Show that every compact Hausdorff space is normal.
- d) Show that \mathbb{R}^{ω} in the uniform topology satisfies the first countability axiom but it does not satisfy the second countability axiom.

(2)

3. Answer any one questions of the following: 8×1

a) i) Define Hausdorff space. Let x and y be two Hausdorff spaces, then show that $x \times y$ is a Hausdorff space. 2+2

ii) Let *X* be metrizable topological space. Show that the following are equivalent:

(u) Every continuous function $\emptyset = X \rightarrow \mathbb{R}$ is bounded.

(v) *X* is limit point compact. 2+2

b) i) Let β be a basis for the topology of a non-empty set x and e be a basis for the topology of y. Then show that the collection

 $D = \{B \times C : B \in \beta \text{ and } C \in e\}$ is a basis for the topology of $x \times y$.

4

ii) Let Y be an ordered set with order topology. Let $f, g: x \to y$ be two continuous functions. Then show that the set $\{x \in x | f(x) \le g(x)\}$ is closed in x. 4

PG (NEW) CBCS M.Sc. Semester-II Examination, 2019 APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING PAPER: MTM-206 (GENERAL TOPOLOGY) Eull Marks: 40

Full Marks: 40		Time: 2 nours
1.	Answer any two questions of the following:	2×2
a)	If y and y' are topologies on a set x and y' is strictly fi	ner than y. What can
	you say about the corresponding subspace topologies	on the subset y of x?
b)	Define an older topology on an ordered set x.	
c)	If Y is a subspace of X and Z is subspace of Y, th	en show that Z is a
	subspace of X.	
d)	Is the space \mathbb{R}_l connected? Justify your answer.	

2. Answer any two questions of the following: 4×2

- a) Let x be a topological space with topology y. if y is a subset of x. Then show that the collection $y_y = \{Y \cup \cap : \cup \in y\}$ is a topology on Y.
- b) State the following theorems:
 - iii) Urysohn Metrization theorem
 - iv) Tychonoff theorem
 - c) Show that every compact Hausdorff space is normal.
- d) Show that \mathbb{R}^{ω} in the uniform topology satisfies the first countability axiom but it does not satisfy the second countability axiom.

4

(2)

3. Answer any one questions of the following: 8×1

a) i) Define Hausdorff space. Let x and y be two Hausdorff spaces, then show that $x \times y$ is a Hausdorff space. 2+2

ii) Let *X* be metrizable topological space. Show that the following are equivalent:

(u) Every continuous function $\emptyset = X \rightarrow \mathbb{R}$ is bounded.

(v) *X* is limit point compact. 2+2

b) i) Let β be a basis for the topology of a non-empty set x and e be a basis for the topology of y. Then show that the collection

 $D = \{B \times C : B \in \beta \text{ and } C \in e\}$ is a basis for the topology of $x \times y$.

ii) Let Y be an ordered set with order topology. Let $f, g: x \to y$ be two continuous functions. Then show that the set $\{x \in x | f(x) \le g(x)\}$ is closed in x. 4
