PG (NEW) CBCS

M.Sc. Semester-II Examination, 2019
 APPLIED MATHEMATICS WITH OCEANOLOGY AND
 COMPUTER PROGRAMMING
 PAPER: C-MTM 204A
 ELECTIVE(CBCS)

STATISTICAL AND NUMERICAL METHODS

Full Marks: 40

Time: 2 Hours

1. Answer any four questions of the following:

a) What is transcendental equation, give an example.?
b) Find the value of x for which $f(x)=0$, where $f(x)$ is given in the table

x	-1	-2	2
$\mathrm{f}(\mathrm{x})$	-1	-9	11

c) A point P is chosen at random on a line segment $A B$ of length $2 a$. Calculate the expected values of the rectangle $\mathrm{AP} \cdot \mathrm{PB}$ and the difference | AP-PB |.
d) Locate the real rod of the equation $f(x) \equiv x^{3}-8 x+5=0$
e) If $y=3 x^{7}-6 x$, find the percentage error in y at $x=1$ if the error in $x=$ 0.05 .
f) Are these two lines $2 x+3 y=7$ and $3 y-7 x=2$ as the regression lines? Give reasons.
g) Write the physical significance of the correlation co-efficient.
h) Define null hypothesis.
2. Answer any four questions of the following:
a) The number of petals was counted for 22 flowers of a certain species with the following results:

4	4	7	5	4	4	4	5	6	5	6
9	4	4	4	4	5	6	4	5	4	4

Draw up a frequency table, and find the mean, median and mode of the sample.
b) Use Newton-Raphson method to evaluate the smallest root of $\mathrm{e}^{\mathrm{x}}-3 \mathrm{x}=0$. Correct to three significant figures.
c) Use Simpson's one-thrid rule to evaluate $\int_{0}^{6} \frac{d x}{(1+x)^{2}}$ taking six equal subintervals of $[0,6]$, correct to 2 decimal places.
d) Explain the bisection method by which the real root of an equation are determined.
e) The values of function $f(x)$ are given for certain values of x :

$x:$	0	0.1	0.2	0.3	0.4
$f(x):$	1	1.095	1.179	1.251	1.310

f) Find the value of $\int_{0}^{5} \frac{d x}{1+x}$ by trapezoidal rule, taking step length $h=1$.
g) Solve by Gauss-elimination method. Correct up to two significant figures. $x+2 y+3 z=10$
$x+3 y-2 z=7$
$2 x-y+z=5$
h) Find $y(0.02)$, from the equation $\frac{d y}{d x}=x^{3}+y, y(0)=1$, taking step length $h=0.01$, by Euler's method, correct up to four decimal places.
3. Answer any two questions of the following:
a) Fit a straight line (a) $y=\mathrm{C}_{0}+\mathrm{C}_{1} x$ and parabolas (b) $y=\mathrm{C}_{0}+\mathrm{C}_{1} x+\mathrm{C}_{2} x^{2}$ and $y=\mathrm{C}_{0}+\mathrm{C}_{2} x^{2}$ to the following data, and compare their goodness fit.

x	3.5	8.4	16.8	23.9	27.1	28.8
y	4.4	9.2	20.6	31.1	35.0	37.7

(3)
b) A die was thrown 1000 times and the frequencies of the different faces were observed to be the following:

Face	1	2	3	4	5	6	Total
Frequency	105	143	181	157	198	216	1000

Test if the die is honest.
c) Describes Newton-Raphson method to find a real root of the equation f $(x)=0$, where $f(x)$ is continuous function of x. Give geometrically interpretation of this method.
d) Compute $y(0.6)$, from the equation $\frac{d y}{d x}=x y, y(0)=2$, taking step length $h=0.2$, by fourth order Runge-Kutta method, correct up to five decimal places.

