PG (NEW) CBCS M.Sc. Semester-II Examination, 2019 APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING PAPER: C-MTM 204A ELECTIVE(CBCS)

STATISTICAL AND NUMERICAL METHODS

Full Marks: 40

Time: 2 Hours

1. Answer any four questions of the following: 2×4

- a) What is transcendental equation, give an example.?
- b) Find the value of x for which f(x) = 0, where f(x) is given in the table

X	-1	-2	2
f(x)	-1	-9	11

- c) A point P is chosen at random on a line segment AB of length 2a.
 Calculate the expected values of the rectangle AP•PB and the difference | AP-PB |.
- d) Locate the real rod of the equation $f(x) \equiv x^3-8x+5=0$
- e) If $y = 3x^7-6x$, find the percentage error in y at x = 1 if the error in x = 0.05.
- f) Are these two lines 2x+3y = 7 and 3y-7x = 2 as the regression lines? Give reasons.
- g) Write the physical significance of the correlation co-efficient.
- h) Define null hypothesis.

2. Answer any four questions of the following: 4×4

a) The number of petals was counted for 22 flowers of a certain species with the following results:

4	4	7	5	4	4	4	5	6	5	6	
9	4	4	4	4	5	6	4	5	4	4	
									(Tur	n over)	1

Draw up a frequency table, and find the mean, median and mode of the sample.

- b) Use Newton-Raphson method to evaluate the smallest root of $e^x 3x = 0$. Correct to three significant figures.
- c) Use Simpson's one-thrid rule to evaluate $\int_0^6 \frac{dx}{(1+x)^2}$ taking six equal subintervals of [0, 6], correct to 2 decimal places.
- d) Explain the bisection method by which the real root of an equation are determined.
- e) The values of function f(x) are given for certain values of x:

<i>x</i> :	0	0.1	0.2	0.3	0.4
f(x):	1	1.095	1.179	1.251	1.310

- f) Find the value of $\int_0^5 \frac{dx}{1+x}$ by trapezoidal rule, taking step length h = 1.
- g) Solve by Gauss-elimination method. Correct up to two significant figures. x + 2y + 3z = 10 x + 3y - 2z = 72x - y + z = 5
- h) Find y(0.02), from the equation $\frac{dy}{dx} = x^3 + y$, y(0) = 1, taking step length h = 0.01, by Euler's method, correct up to four decimal places.

3. Answer any two questions of the following: 2×8

a) Fit a straight line (a) $y = C_0 + C_1 x$ and parabolas (b) $y = C_0 + C_1 x + C_2 x^2$ and $y = C_0 + C_2 x^2$ to the following data, and compare their goodness fit.

x	3.5	8.4	16.8	23.9	27.1	28.8
У	4.4	9.2	20.6	31.1	35.0	37.7

(3)

b) A die was thrown 1000 times and the frequencies of the different faces were observed to be the following:

Face	1	2	3	4	5	6	Total
Frequency	105	143	181	157	198	216	1000
Test if the die is honest							

Test if the die is honest.

- c) Describes Newton-Raphson method to find a real root of the equation f(x) = 0, where f(x) is continuous function of x. Give geometrically interpretation of this method.
- d) Compute y(0.6), from the equation $\frac{dy}{dx} = xy$, y(0) = 2, taking step length h = 0.2, by fourth order Runge-Kutta method, correct up to five decimal places.
