PG (NEW) CBCS

M.Sc. Semester-II Examination, 2019
 APPLIED MATHEMATICS WITH OCEANOLOGY AND
 COMPUTER PROGRAMMING
 PAPER: MTM-203
 (NUMERICAL ANALYSIS)

Full Marks: 40

Time: 2 Hours

UNIT-1:

MTM 203.1: ABSTRACT ALGEBRA

Marks-20

1. Answer any two questions of the following:

a) State the second isomorphism theorem of groups.
b) Are the groups (R, T) and ($R^{*},$.) isomorphic? Justify.
c) Find all maximal ideals at the ring Z_{6}.
d) Define group action with an example.
2. Answer any two questions of the following: 4×2
a) Show that every group of order p^{n} where p is a prime, has a nontrivial center and is solvable.
b) Let R be a a commutative ring with identity and M be an ideal of R. Then M is a maximal ideal of R iff R / M is a field.
c) Show that $f(x)=x^{4}-5 x^{2}+x+1$ is irreducible in $\mathrm{z}[\mathrm{x}]$.
d) If G is an abelian group having subgroups $H_{1}, H_{2}, \ldots ., H_{\mathrm{t}}$ such that $\left|H_{\mathrm{i}} \cap H_{\mathrm{j}}\right|=1$, for all $i \neq j$, then $K=H_{1} H_{2} \ldots H_{\mathrm{t}}$ is a subgroup of G of order $\left|H_{1}\right| \times\left|H_{2}\right| \times \ldots \ldots \times\left|H_{\mathrm{t}}\right|$ and $K \cong|H 1| \times|H 2| \times \ldots \ldots \times$ | $\mathrm{Ht} \mid$.

3. Answer any one questions of the following: 8×1

a) i) State and prove Sylow's first theorem. 4
ii) Show that for each prime p, a finite group G has a Sylow psubgroup. 4
b) i) Show that if R is a principal ideal domain, then it is a unique factorization domain. Give an example to show that the converse is not true. 5
ii) Let $K \subseteq F$ be a field extension and $\alpha \in F$ be algebraic over K. Then show that there exists a unique monic irreducible polynomial $f(x) \in K[x]$ such that $f(\alpha)=0$. 3

UNIT-2:

MTM 203.2 : LINEAR ALGEBRA

Marks-20
4. Answer any two questions of the following: 2×1
a) Define inner product space and also give an example.
b) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear operator. Is it true that $K_{e r} T \subseteq K_{e r} T^{2}$? Justify.
c) What do you mean by a normal operator? Are all self-adjoint operators normal? Justify.
d) What is a quotient space in linear algebra?
5. Answer any two questions of the following: 4×2
a) Determine the linear mapping $T: R^{3} \rightarrow R^{2}$ which maps the basis vectors $(1,0,0),(0,1,0),(0,0,1)$ of R^{3} to the vectors $(1,1),(2,3),(3,2)$ respectively. Further (i) find $\mathrm{T}(1,1,0), \mathrm{T}(6,0,-1)$ (ii) Find $\mathrm{K}_{\mathrm{er}} \mathrm{T}$ and $\mathrm{I}_{\mathrm{m}} \mathrm{T}$ (iii) prove also that T is not 1-1 but onto.
b) Extend the set of vectors $\{(2,3,-1),(1,-2,-4)\}$ to an orthogonal basis of the Euclidean space R3 with standard inner product and then find the associated orthonomal basis.
c) Let T be a linear operator on a finite dimensional vector space V . then prove that T is diagonalizable if the minimal polynomial of T is of the form $\mathrm{P}(\mathrm{t})=\left(\mathrm{t}-\lambda_{1}\right)\left(\mathrm{t}-\lambda_{2}\right) \ldots \ldots\left(\mathrm{t}-\lambda_{\mathrm{k}}\right)$ where $\lambda_{1}, \lambda_{2}, \ldots . . \lambda_{\mathrm{k}}$ are the distinct eigen values of T .
d) Let $T: R^{3} \rightarrow R$ be linear. Show that there exist scalars a, b and c such that $T(x, y, z)=a x+b y+c z$, for all $(x, y, z) \in R^{3}$. Can you generalize this result for $T: F_{n} \rightarrow F$? Justify your answer.

6. Answer any one questions of the following:

 8×1a) i) Which of the following matrices have Jordan canonical form equal to $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$?
u) $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ v) $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ 5
w) $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ х) $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$
ii) Let v and w be finite dimensional vector spaces over a field F with $\operatorname{dim} \mathrm{v}=\mathrm{n}$ and $\mathrm{w}=\mathrm{m}$. Then prove that the dimension of the linear space $L(v, m)=m n$. 3
b) i) If $A=\{(2,1),(3,1)\}$ be the basis of $R^{2}(R)$, then find the dual basis of A.
ii) State and prove first Isomorphism theorem on linear algebra.
iii) Define the characteristic value and characteristics vector of a linear operator on vector space.

$$
3+3+2
$$

