PG (NEW) CBCS

M.Sc. Semester-II Examination, 2019
APPLIED MATHEMATICS WITH OCEANOLOGY AND
COMPUTER PROGRAMMING
PAPER: MTM-202
(NUMERICAL ANALYSIS)

Full Marks: 40

Time: 2 Hours

1. Answer any four questions of the following:

a) Define i) natural spline and ii) clamped cubic spline. $1+1$
b) What is Lagrange's bivariate interpolating polynomial?
c) What is local truncation error for predictor and corrector formula in Milne's predictor- corrector method to solve ordinary differential equation?
d) What is the advantage of Runge-Kutta method to solve ordinary differential equation over Euler method?
e) The iterative methods are better than direct methods to solve a system of linear equations. Explain.
f) What are the advantages to approximate a function using orthogonal polynomials?
g) To fit a polynomial curve from a table of values, the least square method is better than Taylor's series method with respect to computational time. Justify.
h) Find the weights w_{1}, w_{2}, w_{3} so that the relation

$$
\int_{-1}^{1} f(x) d x=w_{1} f(\sqrt{0.6})+w_{2} f(0)+w_{3} f(\sqrt{0.6})
$$

is exact for the functions $\int(x)=1, x, x^{2}$
2. Answer any four questions of the following: 4×4
a) Explain how one can solve a system of linear equations using relaxation method.
b) Given $y^{\prime}=x^{2}+y^{2}$ with $x=0, y=1$. Find $y(0.1)$ by fourth order RungeKutta method.
c) Solve the following boundary value problem
$y^{\prime \prime}+x y^{\prime}+1=0$
with boundary conditions $\mathrm{y}(0)=0, \mathrm{y}(1)=0$ using finite difference method.
d) Deduce 3-point Gauss-Legendre quadrature formula. What is the order of truncation error of this method?
e) Given

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}
x^{3}+\mathrm{a}_{1} \mathrm{x}^{2}+\mathrm{b}_{1} \mathrm{x}+\mathrm{c}_{1}, \quad 0 \leq x \leq 1 \\
x^{3}+a_{2} \mathrm{x}^{2}+\mathrm{b}_{2} \mathrm{x}+c_{2}, \quad 1 \leq x \leq 2
\end{array}\right.
$$

Find the values of $a_{1}, b_{1}, c_{1}, a_{2} b_{2}, c_{2}$ or find the relation among them such that $f(x)$ is a cubic spline.
f) Let $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots \ldots .\left|\lambda_{n}\right|$ be n eigenvalues of a square matrix A of order $\mathrm{n} \times \mathrm{n}$. explain how power method helps you to find the eigenvalues λ_{n}.
g) Find the least squares solution of the system of equations $x+y=3.0$; $2 x-y=0.03, x+3 y=7.03$ and $3 x+y=4.97$.
h) Define Chebyshev polynomial. Show that it is even under certain conditions to be started by you. Express x^{4} in terms of Chebyshev polynomials.
3. Answer any two questions of the following:
a) Find the root of the following equation using the Bairstow method

$$
x^{4}+4 x^{3}-7 x^{2}-22 x+24=0
$$

b) Use the Crank-Nilcolson method to calculate a numerical solution of the problem

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

$0<\mathrm{x}<1, \mathrm{t}>0$, where $\mathrm{u}(0, \mathrm{t})=\mathrm{u}(1, \mathrm{t})=0, \mathrm{t}>0, \mathrm{u}(\mathrm{x}, 0)=2 \mathrm{x}, \mathrm{t}=0$. mention the value of $u\left(\frac{1}{2}, \frac{1}{8}\right)$ by taking $h=\frac{1}{2}$ and $k=\frac{1}{8}$.
c) Describe LU-decomposition method to solve a system of linear equations.
d) Discuss Gauss-Jordon method to find the inverse of a square matrix of order n using partial pivoting.

