MCC/19/M.Sc./Sem.-I/MTM/1

ESTD 2017

2×2=4

PG (NEW) CBCS M.Sc. Semester-I Examination, 2019

MATHEMATICS

PAPER: MTM-106

(Unit: 1 GRAPH THEORY)

Time: 1 Hours

Full Marks: 20

1. Answer any two questions of the following:

- a) Define the terms eccentricity and center in a tree.
- b) Find the chromatic number of the following graph

- c) Give an example of an Eulerian graph which is not Hamiltonian with proper
- d) Explain incidence and adjacency matrix of a graph G.

2. Answer any two questions of the following:

2×4=8

- a) There are 17 telephones in MCC. Is it possible to connect them with wires so that each telephone is connected with exactly 7 others.
- b) Draw the multi-graph associated with the following adjacency matrix

	1 5 1	5	1	01
	5	5 0 1 0	1 1 2	0 0 1 3
2000	1	1	2	1
	ln	0	1	3]

c) Consider the following graph G. Find diameter, centre, cut points and bridge of G.

d) Define Planar graph and prove that the graph K_5 (Kuratowski's first graph) is non-planar.

(Turn Over)

3. Answer any one question of the following:

1×8=8

a) State and prove Euler's theorem for a connected planar graph. Hence, if G is connected planar graph with with $n \ge 3$ vertices and e edges, then prove that $e \le 3n - 6$. b) Find the minimal spanning tree of the following weighted graph.

