PG (NEW) CBCS
M.Sc. Semester-I Examination, 2018

MATHEMATICS
PAPER: MTM-103
(ORDINARY DIFFERENTIAL EQUATIONS AND SPECIAL FUNCTIONS)

1. Answer any four questions from the following.
a) Define fundamental matrix of system of linear homogeneous differential equation.
b) Find all the singularities of the following differential equation and then classify them:

$$
z^{2}\left(z^{2}-1\right)^{2} \omega^{\prime \prime}-z(1-z) \omega^{\prime}+2 \omega=0
$$

c) Define Green's function of the differential operator L of the non-homogeneous differential equation: $\mathrm{Lu}(\mathrm{x})=\mathrm{f}(\mathrm{x})$.
d) Under suitable transformation to be considered by you, prove that Legendre differential equation can be reduced to hypergeometric equation.
e) Prove that:
$\mathrm{F}(-\mathrm{n} ; \mathrm{b}, \mathrm{b} ;-\mathrm{z})=(1+\mathrm{z})$ " where $\mathrm{F}(\mathrm{a} ; \mathrm{b} ; \mathrm{c} ; \mathrm{z})$ denotes the hypergeometric function.
f) Consider the boundary value problem

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0,0 \leq x \leq \pi
$$

Subject to $\mathrm{y}(0)=0, \mathrm{y}(\pi)=0$. Find the values of λ for which the boundary value problem is solvable.
g) Establish the integral representation of confluent hypergeomagnetic function.
h) Find the indicial equation of the Bessel equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-v^{2}\right) w=0
$$

corresponding to its singularity.
2. Answer any four questions from the following.
$4 \times 4=16$
a) Let $\mathrm{w}_{1}(\mathrm{z})$ and $\mathrm{w}_{2}(\mathrm{z})$ be two solutions of $\left(1-\mathrm{z}^{2}\right) \mathrm{w}^{\prime \prime}(\mathrm{z})-2 \mathrm{zw}^{\prime}(\mathrm{z})+(\sec \mathrm{z}) \mathrm{w}=0$ with Wronskian $\mathrm{w}(\mathrm{z})$. If $\mathrm{w}_{1}(0)=1, \mathrm{w}^{\prime}(0)=0$ and $\mathrm{w}\left(\frac{1}{2}\right)=\frac{1}{3}$, then find the value of $\mathrm{w}^{\prime}(\mathrm{z})$ at z $=0$.
b) Using Greens function method, solve the following differential equation $\mathrm{y}^{\prime \prime}(\mathrm{x})=1$, subject to boundary condition $y(0)=y(1)=0, y^{\prime}(0)=y^{\prime}(1)$.
c) Find the generating function for Bessel function of integral order.
d) Deduce Rodrigue's formula for Legendre's polynomial.
e) Find the general solution of the homogeneous equation $\frac{d x}{d t}=\mathrm{Ax}$; where $\mathrm{A}=\left(\begin{array}{ll}3 & 2 \\ 5 & 1\end{array}\right)$ and $\mathrm{x}=\binom{x_{1}}{x_{2}}$.
f) Show that $1+3 \mathrm{P}_{1}(\mathrm{z})+5 \mathrm{P}_{2}(\mathrm{z})+7 \mathrm{P}_{3}(\mathrm{z})+\ldots+(2 \mathrm{n}+1) \mathrm{P}_{\mathrm{n}}(\mathrm{z})=\frac{d}{d z}\left[P_{n+1}(z)+\right.$ $P_{n}(z)$ where $\mathrm{P}_{\mathrm{n}}(\mathrm{z})$ denotes the Legendre's Polynomial of degree n .
g) If the vector function $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ defined as follows
$\phi_{1}=\left[\begin{array}{c}\phi_{11} \\ \cdot \\ \phi_{n 1}\end{array}\right], \phi_{2}=\left[\begin{array}{c}\phi_{21} \\ \cdot \\ \phi_{n 2}\end{array}\right], \ldots, \phi_{n}=\left[\begin{array}{c}\phi_{1 n} \\ \cdot \\ \phi_{n n}\end{array}\right]$
be n solutions of the homogeneous linear differential equation $\frac{d x}{d t}=\mathrm{A}(\mathrm{t}) \mathrm{x}(\mathrm{t})$ in the interval $\mathrm{a} \leq t \leq b$, then these n solutions are linearly independent in $\mathrm{a} \leq t \leq b$ iff Wronskian $\mathrm{W}\left[\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right] \neq 0 \mathrm{Vt}$, on a $\leq t \leq b$.
h) Prove that $\int_{-1}^{1} P_{m}(z) P_{n}(\mathrm{z}) \mathrm{dz}=0$, when $\mathrm{m} \neq \mathrm{n}$ and $\mathrm{P}_{\mathrm{m}}(\mathrm{z}), \mathrm{P}_{\mathrm{n}}(\mathrm{z})$ are Legendre's polynomial.

3. Answer any two questions from the following

A) i) Find the characteristics values and characteristic functions of the Sturn-Liouville problem $\left(\mathrm{x}^{3} \mathrm{y}^{\prime}\right)^{\prime}+\lambda \mathrm{xy}=0 ; \mathrm{y}(1)=0, \mathrm{y}(\mathrm{e})=0$
ii) Determine whether the matrix $\mathrm{B}=\left(\begin{array}{ccc}e^{4 t} & 0 & 2 e^{4 t} \\ 2 e^{4 t} & 3 e^{t} & 4 e^{4 t} \\ e^{4 t} & e^{t} & 2 e^{4 t}\end{array}\right)$ is a fundamental matrix of the system $\frac{d x}{d t}=\mathrm{AX}$ where $\mathrm{X}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right), \mathrm{A}=\left(\begin{array}{ccc}1 & -3 & 9 \\ 0 & -5 & 18 \\ 0 & -3 & 10\end{array}\right)$. If not justify, find another alternative fundamental matrix.
B) i) How do you solve the homogeneous vector differential equation in the form $\frac{d x}{d t}=$ AX where $\mathrm{X}=\binom{x_{1}}{x_{n}}$ and $\mathrm{A}=(\text { aij })_{\mathrm{n} \times \mathrm{n}}$ matrix. [Assuming that the eigen values of A are all real and distinct].
ii) Deduce the confluent hypergeometric differential equation.
C) i) Using Green's function, solve the boundary value problem $Y^{\prime \prime}-y=x, y(0)=y(1) 0$
ii) Prove that

$$
\begin{equation*}
J_{\frac{1}{2}}^{2}(z)+J_{-\frac{1}{2}}^{2}(z)=\frac{2}{\pi z} \tag{5}
\end{equation*}
$$

Also prove that

$$
\begin{equation*}
J_{0}^{1}(z)=-J_{1}(z) \tag{3}
\end{equation*}
$$

D) i) Find the general solution of the $\operatorname{ODE} 2 \mathrm{zw}{ }^{\prime \prime}(\mathrm{z})+(1+\mathrm{z}) \mathrm{w}^{\prime}(\mathrm{z})-\mathrm{kw}=0$. (where k is a real constant) in series form for which values of k is there a polynomial solution? (5)
ii) Deduce the integral formula for hypergeometric function.

