PG (NEW) CBCS
 M.Sc. Semester-I Examination, 2018
 MATHEMATICS
 PAPER: MTM-101
 (REAL ANALYSIS)

1. Answer any four questions from the following.

$$
4 \times 2=8
$$

a) Show that if a Cauchy sequence in a metric space has a convergent subsequence, then the whole sequence is convergent.
b) Define cover and sub cover in a metric space. Give an open cover of $(0,1)$.
c) Is the following a connected subset of R^{2}

$$
\left\{(\mathrm{x}, \mathrm{y}) \in R^{2}: x^{2 / 3}+y^{2 / 3}=1\right\} \text { Justify your answer. }
$$

d) Show that every compact metric space is separable.
e) If $\mathrm{f}(\mathrm{x})=9 \mathrm{x}^{2}-2 \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=5$, then find the value of R-S integral $\int_{3}^{7} f(x) d g(x)$.
f) Show by an example that closed and bounded subsets of a metric space is not necessarily compact.
g) Show that countable union of null subsets of \mathbb{R} is a null set.
h) Find the total variation of the function $f(x)=3 x+2$ over the interval [2,5].
2. Answer any four questions
a) Establish a necessary and sufficient condition for a function $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ to be a function of bounded variation on $[a, b]$.
b) Check whether the function $f(x)=|x-1|+|x|$ on $[0,3]$ is a function of bounded variation or not. If so, also find the variation function of $f(x)$ on $[0,3]$.
c) Show that a metric space (x, d) is connected if every continuous functions $f: x \rightarrow\{0$, $1\}$ is constant, where two point set $\{0,1\}$ is considered to be a metric space under discrete metric.
d) Suppose f is bounded on [a, b], f has finitely many points of discontinuity on $[\mathrm{a}, \mathrm{b}]$ and α is continuous at every point at which f is discontinuous. Then show that $\mathrm{f} \in \mathcal{R}(\alpha)$ on [a, b].
e) Show that continuous image of a connected metric space is connected.
f) Let the functions $f(x)$ and $g(x)$ defined on $[-1,5]$ as follows

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\left\{\begin{array}{lr}
0, & -1 \leq x \leq 3 \\
2 x+1,3 \leq x \leq 5
\end{array}\right. \\
& \text { and } \mathrm{g}(\mathrm{x})=\left\{\begin{array}{lr}
2-3 x^{2}, & -1 \leq x \leq 3 \\
6, & 3 \leq x \leq 5
\end{array}\right.
\end{aligned}
$$

Show that $\mathrm{f}(\mathrm{x})$ is not R-S integrable w.r.t. $\mathrm{g}(\mathrm{x})$ on $[-1,5]$.
g) State general extension theorem. Let x be a non-empty set and $\varphi \neq E \subseteq \mathrm{X}$ and let ξ be a semi algebra of subsets of x . Let $\xi \cap E=\{\mathrm{A} \cap E: \mathrm{A} \in \xi\}$. Show that $\xi \cap E$ is semi algebra if subsets of E.
h) Define Lebesgue integral for unbounded function. Show that $\mathrm{f}(\mathrm{x})$ is

Lebesgueintegrable on $[0,1]$ and find the value of the integral $\int_{0}^{1} f(x) d x$

$$
\text { where } \mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}
\frac{1}{x^{4 / 5}}, & 0<x \leq 1 \\
0, & x=0
\end{array}\right.
$$

3. Answer any two questions
$2 \times 8=16$
i) a) Suppose $\mathrm{f} \in \mathrm{L}^{1}(\mu)$. Prove that to each $\epsilon>0$ there exists $\delta>0$ such that $\int_{E}|f| d \mu<\dot{o}$ whenever $\mu(E)<\delta$.
b) Let $\left\{\mathrm{E}_{\mathrm{k}}\right\}$ be a sequence of measurable sets in X , such that $\sum_{k=1}^{\alpha} \mu\left(E_{k}\right)<\propto$ Then prove that almost all $\mathrm{x} \in \mathrm{X}$ lie in at most finitely many of the sets E_{k}.
ii) a) Define integrand of non-negative measurable function. State and prove the Lebesgue monotone convergence theorem.
b) Evaluate the following:

$$
\begin{equation*}
\int_{-1}^{3} 2 \cos x d(2 x+[x]) \tag{6}
\end{equation*}
$$

iii) Prove that a bounded function $f(x)$ on $[a, b]$ is Lebesgue integrable on $[a, b]$ if for every $\varepsilon>0 \sqsupset a$ measurable position p of $[\mathrm{a}, \mathrm{b}]$ such that $\mathrm{U}(\mathrm{P}, \mathrm{f})-\mathrm{L}(\mathrm{P}, \mathrm{f})<\varepsilon$

Consider the function $\mathrm{f}(\mathrm{x})$ is defined by
$f(x)=\left\{\begin{array}{l}3, \text { when } x \text { is rational in }[1,6] \\ 4, \text { when } x \text { is irrational in }[1,6]\end{array}\right.$
The f is not Riemann integrable on [1, 6], but it is Lebasgue integrable on [1, 6].

